If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16k^2+48k=0
a = 16; b = 48; c = 0;
Δ = b2-4ac
Δ = 482-4·16·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-48}{2*16}=\frac{-96}{32} =-3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+48}{2*16}=\frac{0}{32} =0 $
| 2x+84+(3x+1)=180 | | 9^x=59049 | | 35=2x+6x-5 | | a+2(a+1)=10 | | 5(=4x+16)-20 | | -4(x+4)=-3 | | 7x+15=4x+ | | 8/5=4/v | | 5=4/3(6y+9 | | (9b-2)-2(4b+1)=-6 | | 2,952=41(p+10) | | 3w-24=-5w+32 | | -3(x-3)-10=8 | | -2(x+2)=28 | | .66p+.5=p-3 | | f/5=13 | | 5/11x+1/2=2/5-6/11x+2/5 | | y-4.4=8.11 | | |b/2|+7=11 | | 1/3(21-3a)=6+a | | x+4.1=-19 | | 1y+1y=y | | |-4m|=20 | | (-9x-4)+(8x+9)=1 | | x-(9)=-2 | | 7/2a+7=35a=8 | | 12p+7=34p+9 | | 6n-1=4n-5 | | 5(2x+)=170 | | -7y+4=8y+6 | | -3(9+x)=33 | | (-3x-2)+(x-2)=-8 |